تشخیص بیماری صرع با استفاده از روشهای ابتکاری
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده مهندسی برق و کامپیوتر
- نویسنده محمدرضا اسماعیلی
- استاد راهنما حمید ظهیری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1393
چکیده
تشنج مهمترین علامت بیماری صرع بوده و آنالیز دقیق آن نیز از طریق انجام الکتروانسفالوگرافی(eeg) امکان پذیر است. به دلیل ماهیت این سیگنالها، مطالعه و تجزیه و تحلیل بصری آنها حتی برای یک نورولوژیست مجرب نیز مشکل است. به همین منظور روشهای مختلفی جهت تشخیص خودکار صرع بوسیله تحلیل سیگنال eeg ارائه شده است. در این تحقیق برآنیم تا مروری مختصر بر روشهای تشخیص و جداسازی سیگنالهای صرعی از سیگنالهای سالم و نرمال داشته باشیم. به دلیل خواص ناایستای سیگنال eeg، استفاده از روشهای غیر خطی نتایج بسیار بهتری را به دست میدهند. به طور مثال استفاده از تبدیل ویولت جهت استخراج ویژگیها، استفاده از الگوریتمهای ابتکاری جهت انتخاب ویژگیها و همچنین به کار بردن شبکه های عصبی جهت طبقه بندی سیگنالها، به امری مرسوم در این زمینه تبدیل شده است. در نهایت سیستمی را پیشنهاد میدهیم که بر پایه الگوریتم هوشمند ipo طراحی شده و توانایی بالایی در تشخیص صحیح صرع دارا میباشد.
منابع مشابه
تشخیص صرع در سیگنال EEG با استفاده از الگوریتم ابتکاری صفحات شیبدار(IPO)
Epilepsy is a neurological disorder after stroke. About 1 percent of people in the world are involved with this second most common neurological disorder. Epilepsy can affect people of different ages with an altered behavior or lack of patient awareness and affect one's social life. In 75% of cases, if epilepsy is diagnosed early and properly, it can be treated. Among all existing methods of an...
متن کاملشناسایی خودکار حالتهای مختلف بیماری صرع از سیگنال EEG با استفاده از شبکههای یادگیری عمیق
استفاده از روشی هوشمند برای تشخیص خودکار مراحل مختلف صرعی در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیهوتحلیل دادههای صرع با بازرسی بصری، یکی از چالشهای مهم در سالهای اخیر محسوب میشود. یکی از مشکلات شناسایی خودکار مراحل مختلف صرعی، استخراج ویژگیهای مطلوب است؛ بهگونهای که این ویژگیها بتوانند بیشترین تمایز را بین مراحل مختلف صرعی ایجاد کنند. فرآیند یافتن ویژگیهای مناسب، عموماً ام...
متن کاملتشخیص بیماری دیابت نوع2 با استفاده از درخت تصمیم C4.5
مقدمه: یکی از شایعترین بیماریها در دنیای امروز بیماری دیابت است و سالانه شیوع دیابت در سطح جهان حدود درصد افزایش مییابد. استفاده از تکنیکهای دادهکاوی برای ایجاد مدلهای پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمککننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روشهای پیشگیری و تشخیص این بیماری پرداخته شد. روش: در این پژوهش کاربردی- توصی...
متن کاملتشخیص بیماری دیابت نوع2 با استفاده از درخت تصمیم C4.5
مقدمه: یکی از شایعترین بیماریها در دنیای امروز بیماری دیابت است و سالانه شیوع دیابت در سطح جهان حدود درصد افزایش مییابد. استفاده از تکنیکهای دادهکاوی برای ایجاد مدلهای پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمککننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روشهای پیشگیری و تشخیص این بیماری پرداخته شد. روش: در این پژوهش کاربردی- توصی...
متن کاملتشخیص بیماری پریودنتال با استفاده از الگوریتم لونبرگ- مارکواردت
خلاصه: سابقه و هدف: بیماری پریودنتال، یکی از شایعترین بیماریهای عفونی دهان است. تشخیص صحیح و زودهنگام آن میتواند موجب کاهش میزان عوارض ناخوشایند گردد. هدف از این مطالعه بررسی دقت و کارایی شبکهی عصبی مصنوعی در تشخیص بیماری پریودنتال است. مواد و روشها: این مطالعهی تشخیصی، در بازهی زمانی سالهای 94 و 95 از بررسی پروندهی پزشکی 230 مراجعه کننده به بخش پریودانتیکس دانشکدهی دندانپزشکی زاهدان ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده مهندسی برق و کامپیوتر
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023